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Key Discoveries: 

 Interannual changes in groundwater storage inferred from baseflow in 10 headwater 

catchments exhibit coherent 2-5 and 12-15 year periodicity.  

 Interannual variability in groundwater storage is related to 1-4 years of antecedent 

precipitation (+) snowmelt rate (+) and temperature (-).  

 Groundwater storage in warmer/drier catchments is related to longer periods of 

antecedent climate than cooler/wetter catchments. 

Abstract:  

 

Seasonally snow-covered catchments in the western United States supply water to growing 

populations as both annual snowmelt-driven streamflow and multi-year groundwater recharge. 

Although interannual variability in streamflow is driven largely by precipitation, runoff 

efficiency (the ratio of streamflow to precipitation) in individual catchments varies by 50% or 

more. Recent work suggests that interannual variability in groundwater storage, inferred from 

winter baseflow, is a primary control on runoff efficiency, highlighting a need to quantify both 

the time scales on which groundwater storage varies and the hydro-climatic drivers of storage. 

Using over a century of daily stream discharge data from ten seasonally snow-covered A
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catchments in northern Utah, we find that temporal variability in winter baseflow, an index of 

groundwater storage, measured from mean daily January discharge, exhibits a 2-5- and 12-15-

year periodicity, driven by regional precipitation patterns and snowmelt dynamics.  Specifically, 

multiple linear regression (MLR) modeling using antecedent hydro-climatic variables 

demonstrates that winter baseflow (groundwater storage) was positively related to 3-4 years of 

antecedent annual precipitation, negatively related to the previous year’s mean annual 

temperature, and positively related to 1-4 antecedent years of snowmelt rate and duration. 

Because antecedent baseflow (groundwater storage) is strongly related to runoff efficiency, these 

results suggest that more frequent and longer droughts in a future climate will reduce surface 

water supplies faster than otherwise expected. More broadly, these results highlight the 

importance of including the influence of antecedent climate on groundwater storage when 

modeling and managing water supplies from seasonally snow-covered catchments. 
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1. Introduction 

 

Snowmelt from mountainous headwater catchments is the primary water supply for adjacent 

lowlands in the western United States (Dettinger et al., 2015; Mote et al., 2005; Viviroli et al., 

2020). Interannual variability, defined here as the annual change relative to the historic mean, in 

total annual streamflow is controlled primarily by precipitation, especially winter snowfall (Bales 

et al., 2006; Harpold et al., 2012; McCabe et al., 2007). Snowmelt-generated total annual 

streamflow is characterized by high interannual variability, where average snow years can result 

in significantly below- or above-average annual total streamflow (Bales et al., 2006; Brooks et 

al., 2021; Miller & Piechota, 2011; Mote, 2006; Woodhouse et al., 2016). Variability in annual 

total streamflow is expected to increase in a changing climate, as a result of warmer temperatures 

increasing evaporation and transpiration (Barnett et al., 2005; Goulden & Bales, 2014; Harpold 

& Brooks, 2018; Sexstone et al., 2018), snowmelt beginning earlier and progressing more slowly 

(Barnhart et al., 2016; Musselman et al., 2017), and decreasing the fraction of precipitation 

falling as snow (Barnett et al., 2005; Barnhart et al., 2016; Milly et al., 2018; Mote, 2006; 

Musselman et al., 2018). Changes in snowmelt rate influence the fraction of precipitation that 

makes it to streamflow (runoff efficiency) with earlier and slower melt associated with reduced 

runoff efficiency (Barnhart et al., 2016; Musselman et al., 2017; Painter et al., 2018). Interannual 

variability in runoff efficiency complicates streamflow prediction, highlighting a need to 

understand how and why snowmelt-generated streamflow will change in the future (Bryant et al., 

2013; Gordon et al., 2022; Milly et al., 2008). Understanding headwater catchment response to 

climate change is critical in the drought-prone western U.S. (Williams et al., 2022), especially as 

the population grows and water demand increases (Viviroli et al., 2020).   



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Recent work indicates that interannual variability in snowmelt dynamics interacts with multi-

year cycles of antecedent groundwater storage to control annual runoff efficiency (Brooks et al., 

2021). Statistical models incorporating these interactions reduce uncertainty in streamflow 

prediction to less than 5% (Brooks et al., 2021). Although most models of hydrologic 

partitioning in headwater catchments assume minimal carryover of storage from year to year, an 

increasing body of literature indicates that the volume of water stored in headwater catchments 

may be large (Arnoux et al., 2020; Carroll et al., 2019; Frisbee et al., 2011; McNamara et al., 

2011). Hydrochemical analysis suggests that stored water maintains flows before and after 

seasonal snowmelt (Frisbee et al., 2017; Hayashi, 2020), and buffers or exacerbates how much 

snowmelt is routed to streamflow  (Dierauer et al., 2018; Huntington & Niswonger, 2012; 

Jefferson et al., 2008). Multiple catchments in the western U.S. exhibit chemostatic behavior, 

suggesting that the chemical composition of streams change very little (chemostasis) even during 

peak snowmelt, when a rapid increase in streamflow occurs, the majority of streamflow is still 

sourced from stored groundwater (Godsey et al., 2009; Kirchner, 2003). Stored water also 

supports vegetation in arid environments, especially during drought (Christensen et al., 2021; 

Hahm et al., 2019; Tai et al., 2020). Although both catchment hydrology and ecohydrological 

research have identified the importance of large and potential variable groundwater storage in 

headwater systems, research on the effects of climate change on streamflow generation typically 

does not explicitly consider stored water (Cochand et al., 2019; Dunn et al., 2008; Rodgers et al., 

2005; Soulsby et al., 2006).  

It is unknown how climate change will specifically influence groundwater storage in 

individual headwater catchments, critical to streamflow and forest health. This is due in part to 

the challenges involved with quantifying sub-surface storage in complex topographic terrain in 
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headwater catchments (Kampf et al., 2020). Multiple approaches have been employed to identify 

the streamflow component derived from stored water, including recession analysis, chemical 

tracers, mixing models, and physically based hydrologic models (Wittenberg, 1999; Godsey et 

al., 2009; Miller et al., 2014 ; Carroll et al., 2019; Rumsey et al., 2020). Physical hydrologic 

models can be used to evaluate dynamic groundwater storage using known periods of low flows 

representative of a streams’ baseflow (Brutsaert, 2008). To quantify historical contributions of 

stored water to streamflow, physical models that quantify baseflow (measured from streamflow) 

as a metric to understand groundwater influx to streams, allow for analysis of an extended period 

of record of dynamic storage variability over time,  due to the relatively long records available 

for daily streamflow measurements compared to other metrics (Brutsaert, 2008; Staudinger et al., 

2017; Wittenberg, 1999). Using baseflow as a metric for dynamic groundwater storage, recent 

studies in the Upper Colorado River Basin suggest baseflow will be reduced due to climate 

change as a result of decreased input from snow (Miller et al., 2021). These findings suggest that 

variability in baseflow is controlled by regional climate forcings (Chikamoto et al, 2020). 

However, there is still high uncertainty on what specific climate factors lead to above or below 

average groundwater storage (baseflow) and how these factors may vary under differing climatic 

and geologic settings. 

We address what specific hydro-climatic factors control changes in groundwater storage 

using over a century of streamflow data from ten snowmelt-dominated catchments in Northern 

Utah with the same regional climate but with variable mean annual temperature, total 

precipitation, and runoff efficiency across a range of geologic regimes. We ask, how has 

groundwater storage in these headwater catchments, inferred from winter baseflow, varied over 
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the last century? And what are the hydro-climatic factors that control variability of groundwater 

storage, inferred from winter baseflow, within a catchment? 

2.  Data and Methods 

2.1 Study Sites 

Ten snow-dominated headwater catchments of the Jordan and Weber Rivers in northern 

Utah (Figure 1) were selected for the study based on the length of the streamflow measurement 

record and minimal diversions and impoundments. These catchments are uniquely suited to 

address our questions, having a relatively long period of record (between 76 and 118 years), 

especially for montane environments; they have similar climate regimes relative to other 

intermountain catchments, each with distinct precipitation and temperatures driven by elevation 

and other geographic factors. Distributed across the Wasatch and Uinta Mountains of northern 

Utah, the ten catchment areas range from 19 to 643 km2, with mean elevation ranging from 1963-

2759 m (Table 1). Seven catchments contain tributaries of the Jordan River (J) including: City 

Creek (J C.C.), Red Butte Creek (J R.B.), Emigration Creek (J E.C.), Parleys Creek (J P.C.), Mill 

Creek (J M.C.), Big Cottonwood Creek (J B.C.), and Little Cottonwood Creek (J L.C.). Three 

headwater tributaries were selected from the Weber River, including the South Fork of the 

Ogden River (W O.S.), Chalk Creek (W C.C.), and the Weber Headwaters at Oakley (W O.). 

These catchments represent the diverse watersheds found throughout the intermountain western 

U.S. characterized by relatively cool and wet winters with hot and dry summers (Harpold et al., 

2012; McCabe et al., 2018). Spatial variability in precipitation is high where Uinta Mountain 

catchments (although higher elevation) receive less precipitation than Wasatch Mountain 

catchments due to orographic placement out of line/ in alignment with storm tracks. The 10 

catchments are lithologically and structurally complex with bedrocks ranging from Precambrian 

quartzites and shales to Tertiary igneous intrusions. The annual cycle of streamflow in these 
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catchments is typical for snowmelt systems, with peak discharge in spring during snowmelt, 

reduction in streamflow in late summer when evapotranspiration is high, followed by relatively 

stable flows in mid-winter (Bales et al., 2006; Frisbee et al., 2011). These tributaries are major 

water sources to either Salt Lake City Public Utilities (SLCDPU) or the Weber Basin Water 

Conservancy District (WBWCD), together providing water for over 1 million residents in 

northern Utah.  

2.2 Hydro-climate data 

 

Historical monthly mean precipitation(mm) and air temperature (°C) were extracted from 

4km resolution grids developed by the Parameter-elevation Regression on Independent Slopes 

Model (PRISM) climate record (PRISM Climate Group, 2018) from 1901-2018. Gridded PRISM 

data were clipped to the boundary of each catchment, then the catchment average for each metric 

was calculated.  Monthly precipitation and temperature data were aggregated to the annual 

timestep. Daily streamflow records were obtained from SLCDPU 2018 

(https://www.slc.gov/utilities/grama/) or the United States Geological Survey (USGS, 2018) 

(https://waterdata.usgs.gov/ut/nwis/). Daily streamflow discharge was converted from ft3/s to 

mm/day, giving a one-dimensional unit normalized to the watershed area, facilitating 

comparisons between precipitation and stream discharge and between catchments. All 

streamflow and climatic metrics were calculated on a water year basis (October 1st-September 

30th). Annual runoff efficiency (RE), also termed fractional water yield, was calculated by 

dividing total annual discharge (Q (mm/year)) by total annual precipitation (P (mm/year)). 

Variability was presented as either standard deviation from the mean (SD), coefficient of 

variation (CV; SD/mean), or standardized to a z-score by subtracting the mean and dividing by 

the standard deviation to compare values between catchments. Long term trends are analyzed 

https://www.slc.gov/utilities/grama/
https://waterdata.usgs.gov/ut/nwis/
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using linear regression, and change points are detected using Pettitt change point analysis (Pettitt, 

1979). 

2.3 Statistical Analysis and Processing 

 

 A change in winter baseflow (ΔWBF) calculated using mean daily streamflow in January 

in mm/day from each year is used as an index of interannual variability in groundwater storage.   

Daily streamflow discharge in mid-winter in these snowmelt dominated streams are typically low 

and steady, (SD ≤ 0.03) (SI Figure 1), with very little influence from rain, or episodic melt, with 

mean catchment January temperatures ranging from(-3°C to -7°C). We assume here that these 

mid-winter (January) steady flows are an index of antecedent catchment groundwater storage. A 

broad range of studies infer groundwater storage from baseflow (Brooks et al., 2021; Cooper et 

al., 2018; Miller et al., 2014; Rumsey et al., 2020; Safeeq et al., 2014) and here we are using 

baseflow to infer the relative change from year to year in groundwater storage. To address the 

few instances where January rains occur or episodic melt occurs,  each year was screened and in 

the event of high daily variability (SD>0.03 from mean), that year’s value was removed. 

Additional years were removed if daily streamflow went to zero, indicative of ice dams or gage 

malfunction. Between 3 and 11 years were removed from each catchment. W C.C. (3 years 

removed), J E.C. (6 years removed), J P.C.( 6 years removed), J R.B. ( 3 years removed), J M.C. 

(6 years removed), W O.S. (11 years removed), J C.C. (6 years removed), J B.C. (5 years 

removed), W O. (3 years removed), J L.C.(4 years removed). We acknowledge here that the 

daily fraction of streamflow composed of baseflow will vary throughout the year, however we do 

not address variable baseflow contributions to the stream throughout the year.  

Periodicity in winter baseflow was analyzed using wavelet power analysis, which 

identifies periodicity in a data set using Morelet wavelet analysis. Wavelet analysis quantifies the 
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amplitude and frequency of positively correlated wave signals over a time series. We used the 

Roesch and Schmidbauer, WaveletComp: Computational Wavelet Analysis in R (Roesch and 

Schmidbauer, 2018). Statistical significance was evaluated using t tests assuming one degree of 

freedom per water year.   

2.4 Derived variables 

 

We considered antecedent hydro-climatic influence on Δwinter baseflow at a wide range 

of temporal scales, including seasonal and annual variability from up to 10 years in the past. The 

following metrics were calculated: antecedent fall precipitation (F.P.) (total precipitation from 

October-December), annual total precipitation (P), mean annual temperature (T), snowmelt rate 

(M.R.), and snowmelt duration (M.D.). Each of these variables were standardized to a z-score.  

Snowmelt rate and snowmelt duration were calculated using the start and end date of bulk 

seasonal snowmelt attenuated in the stream hydrograph. This approach is consistent with a 

multitude of studies inferring melt timing and duration from stream hydrographs (Cayan et al. 

2001, Clow.  2010, Stewart et al., 2005).  The start of the snowmelt was identified when the daily 

stream hydrograph deviated distinctly from winter baseflow conditions. This distinct deviation 

was quantified using a threshold metric (equation 1), which addresses when the snowmelt signal 

exceeds daily winter baseflow variability.  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  
 𝜎𝑄𝑏

𝑃𝑒𝑎𝑘 𝑄 − 𝑄𝑏
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                                     (1) 

Where  𝜎𝑄𝑏 is the mean standard deviation of winter baseflow across all years, Peak Q is the 

mean peak discharge across all years, and Qb is the mean of winter baseflow across all years in 

the given watershed. The threshold value explains the potential variability associated with winter 
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streamflow; threshold values range from 0.01 (J C.C.) to 0.03 (J M.C.). The threshold value of 

0.03 was determined to be the value that was applicable in every catchment as it included all 

lower threshold values as well (Brooks et al, 2021). This threshold indicates that daily discharge 

is greater than 3% of the difference between the peak discharge of that year (𝑃𝑒𝑎𝑘 𝑄(𝑛)) and 

baseflow for that year (𝑄𝑏(𝑛)) ensuring that the snowmelt controlled phase of the hydrograph 

was elevated above baseflow conditions. Snowmelt start was calculated using equation (2) 

𝑄𝑑 > 𝑄𝑏(𝑛) + (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ (𝑃𝑒𝑎𝑘 𝑄(𝑛) − 𝑄𝑏(𝑛)))                           (2) 

where Qd is daily streamflow, Qb is baseflow, Threshold = 0.03, Peak Q is annual peak 

discharge, and n is water year. The day of snowmelt start was calculated as the first day when the 

snowmelt onset equation (equation 2) is satisfied for the first day of a 25 consecutive day period 

in which each subsequent day also is above the threshold value. Snowmelt end date was 

calculated when the slope (rate of change) of the falling limb of the hydrograph decreased from a 

rapidly declining slope to a flat slope, identifying the end of the snowmelt runoff phase of the 

hydrograph, where streamflow begins to transition back to baseflow conditions. The falling limb 

of the hydrograph was smoothed using a Savitsky-Golay filter from the Matlab ‘smooth’ 

function. The Savitsky-Golay filter fits 2nd degree polynomials to the data using least-squares 

regression. Then a change point test (Killick et al., 2012) was used to find the point where the 

slope of the falling limb of the hydrograph (from peak flow until end of water year) changed the 

most significantly, indicating a return to baseflow conditions (Cayan et al., 2001; Painter et al. 

2018). Snowmelt duration  was calculated as the day of melt start subtracted from the day of melt 

end.  

Snowmelt rate was calculated using equation 3.  
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𝑆𝑛𝑜𝑤𝑚𝑒𝑙𝑡 𝑃𝑢𝑙𝑠𝑒 𝑅𝑎𝑡𝑒 =  
𝑚𝑒𝑙𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝑚𝑒𝑙𝑡 𝑝𝑢𝑙𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
                                                   (3) 

Snowmelt volume is the summation of daily streamflow, normalized for catchment area, 

during the snowmelt season in millimeters, yielding snowmelt rate in units of mm/day. Because 

snowmelt rate and duration are correlated with the total winter snowpack, we calculated 

normalized snowmelt rate (normMR) and duration (normMD). We normalized these values by 

taking the linear regression between winter precipitation (December-March) and snowmelt rate 

and duration. We took the residual value of each individual year from the regression to normalize 

for the influence of snow input, and restrain the relative fast or slow snowmelt rate, or the long or 

short snowmelt duration attenuated in the stream hydrograph (SI Figure 2). 

Using the metrics described above, we evaluated the individual control that each previous 

year (up to 10 years in the past) had on the annual change in catchment groundwater storage, 

quantified using a change in winter baseflow between years indicated as ΔWBF(wy), where (wy) 

represents the water year when winter baseflow is predicted. A change in winter baseflow for 

each year was predicted using a multiple linear regression (MLR) model. We included Fall 

P(wy), antecedent precipitation P(wy-i), antecedent temperature T(wy-i), antecedent 

normMR(wy-i), and antecedent normMD(wy-i), where i denotes the lag in year. For example 

P(wy-2) means that total annual precipitation from two water years previous was included as a 

control. The multiple linear regression  model used to predict ΔWBF(wy) includes antecedent 

hydr-climatic variables whose regression coefficients (β) can be distinguished from zero at the 

95% confidence level. To measure how well our model predicts changes in winter baseflow, we 

compared the observed ΔWBF with the predicted ΔWBF.  

3. Results 
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Mean annual precipitation across catchments ranged from 558mm/year (W C.C.) to 

1293mm/year (J L.C.); mean annual temperature ranged from 2.6°C (W O) to 6.9°C (J R.B.); 

mean annual discharge ranged from 94mm/year (W C.C.) to 807mm/year (J L.C.); mean annual 

runoff efficiency (RE) ranged from 0.17(W C.C.) to 0.62 (J L.C.) (Figure 2; Table 1). 

Interannual precipitation variability within each catchment was consistent across the study area 

(CV= 0.2) (Table 1). Streamflow in each catchment was characterized by a seasonally driven 

pulse from spring snowmelt, with annual peak streamflow occurring from April-June, receding 

in July-August, and returning to baseflow conditions through the fall and winter. Each 

catchment's total annual streamflow displayed high interannual variability (CV=0.3-0.7) (Table 

1).   

Mean winter baseflow across ten sites ranged from 0.08 to 0.51 mm/day (28.8-184.9 

mm/year) (Figure 2; Table 1). Winter baseflow was not significantly correlated with either 

precipitation or temperature in January in seven of the ten catchments (SI table 2). Small, 

statistically significant correlations were observed between January precipitation and winter 

baseflow in J B.C. (𝑟2 = 0.05; p = 0.02) and W.O. (𝑟2 = 0.03; p =0.05), and between January 

temperature and winter baseflow in J B.C. ( 𝑟2 = 0.03; p = 0.05) and J M.C. ( 𝑟2 = 0.05; p = 

0.03) (SI Table 2). Interannual winter baseflow varied significantly over the last century (CV = 

0.2-0.7) (Table 1). Mean winter baseflow was positively correlated with the long-term mean 

annual catchment precipitation, where wetter catchments had higher winter baseflow compared 

to drier catchments (𝑟2 = 0.75; p < 0.001) (Figure 3). In contrast, winter baseflow was not 

significantly correlated with mean annual temperature, although warmer catchments generally 

had lower winter baseflow than colder catchments (Figure 3).  
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Winter baseflow exhibited temporally coherent long-term variability over the last century 

across all sites (SI Figure 3). Wavelet analysis revealed two primary peaks in periodicity, one 

from 2-5 years (wavelet power= 0.23) and a second at 12-15 years (wavelet power= 0.29) 

(Figure 4), wavelet power values describe the correlation intensity between peaks. The 2-5-year 

periodicity (p = 0.1) was observed over the entire century, and the 12-15 year periodicity was 

statistically significant (p = 0.05) from 1960-2002 (Figure 4). Inter-annual variability in winter 

baseflow was significantly and positively related to annual changes in runoff efficiency across all 

catchments (slopes ranging from 0.45 to .76 with p<0.001)(SI Table 3). In warmer (mean annual 

T> °6) and drier (mean annual P <900mm/year) catchments, runoff efficiency is more sensitive 

Δwinter baseflow(slope>0.6) compared to cooler (mean annual T< °6), and wetter catchments 

(mean annual P >900mm/year) (SI Figure 4).  

MLR models demonstrated that inter-annual variability in winter baseflow values were 

significantly related to a number of antecedent hydro-climatic variables over the previous four 

years ( 0.29 ≤ 𝑟2 ≤ 0.87; p<0.05) (Figure 5; Table 2). Winter baseflow was significantly related 

to the concurring water year’s fall precipitation (9/10 catchments), 1- 4 years of antecedent 

precipitation (all catchments), 1-3 years of previous snowmelt rate and/or duration (9/10 

catchments), and 1 year of antecedent temperature (8/10 catchments) (Table 2). No catchment 

exhibited significant relationships between hydro-climatic variables and a change in winter 

baseflow more than four years in the past. In addition, the strength of the relationship decreased 

as the number of years previous increased. These results informed our model to only include 

antecedent hydro-climatic variables from up to 10 years prior. The number of variables retained 

as significant in each regression ranged from as few as two (J L.C.) to as many as 10 (J C.C.) 

(Table 2, SI Figure 5).  The strongest predictors of Δwinter baseflow in all catchments was the 
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concurring year’s fall precipitation (β= 0.14-0.56), the previous year’s annual precipitation (β= 

0.14-0.57), or the previous year’s melt rate (β= 0.07-0.44) (Table 2). 

The MLR models better predicted Δwinter baseflow in lower-runoff efficiency, warmer, 

and drier catchments, (r2>0.70 for W C.C., J P.C., J R.B., J M.C.) than in higher-runoff 

efficiency, cooler, and wetter catchments (0.70>r2> 0.46 ( W O.S., J C.C., J B.C., W.O., and J 

L.C.) (Table 2).  In catchments with higher predictiability (W C.C., J P.C., J R.B., J M.C.) 

bedrock geology is primarily sedimentary (carbonates and clastics) in W C.C., J P.C., J R.B., J 

M.C., and higher number of antecedent variables are included in these regressions. In catchments 

with fewer number of variables included in the MLR, and lower predicitability of Δwinter 

baseflow, catchment bed rock geology includes igneous (intrusive) bedrock, such as in J.L.C. 

which has only 2 antecedent predictors (antecedent Fall P and antecedent total annual 

precipitation from 1 year prior). There was no significant relationship between area or elevation 

and Δwinter baseflow predictabilty.  J E.C. was an exception to this overall pattern. Although J 

E.C. is relatively low elevation, warm and dry with a low runoff efficiency =0.18, and 

sedimentary bedrock, predictability of Δwinter baseflow was low (r2=0.29) compared to 

catchments with similar climate regimes (Table 2).  

4. Discussion 

 

4.1 Periodicity in winter baseflow 

 

In headwater catchments in Northern Utah, we found a coherent pattern of inter-annual 

variability in catchment groundwater storage inferred from winter baseflow over the last century. 

The century long 2-5 year periodicity (p-val = 0.10) and half century long 12-15 year periodicity 

(p-val = 0.05) observed in Δwinter baseflow suggest that the inter-annual variability in 
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catchment storage associated with mountain precipitation inputs are susceptible to change and 

respond to climatic variance on timescales longer than one water year. Regional patterns in 

precipitation on 12-15 year time scales have been identified for Northern Utah and the Great 

Basin driven by Interdecadal Pacific Oscillation (Wangs et al. 2010, Wang et al. 2012, Wise 2010 

). Wise 2010 also highlights that Northern Utah falls within the transition zone of El Nino 

Southern Oscillation (ENSO) influence on precipitation, where some years ENSO leads to high 

precipitation and other years ENSO has little influence on precipitation. The shifting of this 

transition phase on weather ENSO has a relative impact on precipitation in Northern Utah is 

modulated by PDO (Pacific Decadal Oscillation, and AMO (Atlantic Multi-Decadal Oscillation). 

Tree ring records suggest this 12-15 year periodicity has been present for 500+ years in the 

region (DeRose et al. 2014). Masbruch et al. 2016 link observed 11-13 year variability in valley 

groundwater in Northern Utah from 1960-2013 to the 12-15 year precipitation anomalies 

identified for Northern Utah. The relatively shorter periodicity observed at 2–5-year timescale in 

mountain catchments has yet to be identified, however most catchments exhibit significant 

relationships to antecedent hydro-climate up to four-years prior. Tracking the dynamics of 

groundwater storage in mountain environments is rare (McNamara et al., 2011) even though 

recent studies highlight that variable change in headwater catchment storage explains a large 

portion of year-to-year variability in annual runoff efficiency (Arnoux et al., 2020; Brooks et al., 

2021; Carroll et al., 2019; Hayashi, 2020). Previous studies have identified physical 

characteristics that may control spatial differences in catchment storage, including (but not 

limited to) catchment geology and topography that control flow path routing and depth of 

permeation (Aishlin & McNamara, 2011; Dailey, 2016; Hood & Hayashi, 2015; McNamara et 

al., 2011; Rumsey et al., 2020). In contrast, relatively few studies quantify interannual temporal 
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changes in individual catchment storage beyond soil moisture (Hayhoe et al., 2007; Wooldridge 

et al., 2003). Other studies specifically highlight the climatic controls on low flows, specifically 

within one water year, highlighting the importance of wintertime precipitation and summertime 

evaporative demands on storage (Cooper et al., 2018; Godsey et al., 2014; Goulden & Bales, 

2014).  

4.2 Mechanisms supporting how catchment storage predispose catchments for high/low 

runoff efficiency  

 

  The geologic, topographic, and physical characteristics of a catchment are essential to 

understand differences in catchment runoff efficiency, recharge amount, and groundwater 

storage size, these factors will likely remain stable on human time scales; however, climate is 

expected to continue to change (Dettinger et al., 2015; Nogués-Bravo et al., 2007) with impacts 

on catchment storage (Price, 2011). Consecutive wet/dry periods will result in increased/ 

decreased baseflow conditions and subsequently control runoff efficiency on a timescale longer 

than one water year. The mechanisms underlying the strong, statistical relationships between 

antecedent winter baseflow and runoff efficiency are unknown, but are consistent with the 

growing body of hydrochemical research that suggests headwater catchments are able to store 

and rapidly release large volumes of water (Neal et al., 1997, Neal and Kirchner 2000,, Kirchner 

2003, Godsey et al., 2009). For example, J RB is a USGS hydrologic benchmark location (Cobb 

and Biesecker, 1971) which exhibits chemostatic behavior during snowmelt (Godsey et al., 2009). 

Specifically, the concentrations of solutes derived from host rock weathering in streamflow 

changes very little while streamflow varies several orders of magnitude indicative of large 

amounts of stored ground or subsurface water. The relationship between antecedent winter 

baseflow, our index of stored groundwater, and runoff efficiency suggests that as the amount of 
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storage changes the sources and routing of snowmelt to streamflow change. Potential 

mechanisms underlying these changes include preferential routing of melt to subsurface storage 

when antecedent storage is low, similar to fill and spill (McDonnell et al, 2021, Tromp van 

Meerveld et al, 2015), transmissivity feedbacks resulting in greater flow through near surface 

soils with higher hydraulic conductivity when storage is high (Bishop et al., 1990), more rapid 

soil saturation and increased overland flow when storage is higher (Wu et al., 2021), or greater 

activation of piston pumping or macropore flow (Detty and McGuire (2010)) when storage is 

higher. These mechanisms are not exclusive however but all suggest that a greater fraction of 

incoming snowmelt being partitioned to storage when antecedent catchment storage is low, and 

increased runoff efficiency when storage is high.  

 

4.3 Climatic Controls on Winter Baseflow: 

4.3.1 Antecedent Precipitation Controls on Δwinter baseflow 

 

Our findings that fall precipitation is related to Δwinter baseflow across all catchments is 

consistent with recent work indicating that fall precipitation is more readily partitioned to 

recharge than evapotranspiration compared to spring or summer precipitation (Dailey, 2016; 

Goodrich et al., 2000; Rungee et al., 2018). The fall season in semiarid catchments is typically 

when plants senesce, energy availability decreases as the sun angle gets lower and temperatures 

decrease. Fall season decreases in plant activity result in reduced atmospheric demands for water 

(Rungee et al., 2018). The decrease in evaporative/atmospheric demand may allow for 

precipitation to more readily be partitioned to stored water rather than to the atmosphere, 

increasing winter baseflow.  
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We find that multiple years of antecedent precipitation (of which the majority falls as 

snow) are positively and significantly related to above or below average winter baseflow up to 4 

years later. This is consistent with past work suggesting that seasonal snowmelt contributes to 

both streamflow generation (Julander & Clayton, 2018; Liu et al., 2008; Miller et al., 2020; Mote 

et al., 2018) and groundwater recharge (Arnoux et al., 2020; Carroll et al., 2019; Cochand et al., 

2019; Dailey, 2016; Schilling et al., 2021). Other work in the region suggests that the 12-15 year 

patterns observed in winter baseflow are also observable in the Northern Utah Valley/ Great 

Basin groundwater levels measured from the 1960-2013. This study found that five large 

groundwater recharge events were identified with a frequency of about 11–13 years driven by 

above-average annual precipitation (Masbruch et al. 2016). The patterns observed in the first half 

of the century vs the second and the regional climatic drivers of these patterns remain un-

explained. Our findings suggest that faster/slower snowmelt rates from 1-4 years in the past 

increases/decreases winter baseflow. The number of years important to controlling Δwinter 

baseflow varies from catchment to catchment, where Δwinter baseflow in cooler and wetter 

catchments is typically controlled by climatic conditions on shorter timescales (1-2 years), and 

warmer and drier catchments respond at a 3-4 year timescale. We also observe that in cooler and 

wetter catchments, year to year changes in runoff efficiency are controlled to a lesser degree by 

changes in winter baseflow, suggesting that runoff efficiency in these catchments may respond to 

climate at a faster timescale with annual precipitation primarily being routed to streamflow in 

that water year. Despite mean winter baseflow values typically being higher in cooler and wetter 

catchments (Figure 3), their relative influence on runoff efficiency is smaller (SI Figure 2).  
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4.3.2 Antecedent Temperature Controls on Δwinter baseflow  

  Under future climate scenarios, temperatures are expected to continue to increase, 

especially in mountain environments which are expected to warm at two to three times the 

average rate of warming during the 20th century (Christensen et al., 2021; McCabe et al., 2007; 

Nogués-Bravo et al., 2007). In 7/10 catchments, temperature is negatively and significantly 

related to Δwinter baseflow. These findings suggest that if the previous year’s mean annual 

temperature was above/below average, the following water year’s Δwinter baseflow was 

below/above average. Increasing temperatures will lead to increasing evapotranspiration 

(evaporation and transpiration), decreasing both recharge and discharge (Christensen & 

Lettenmaier, 2007; Christensen et al., 2004; Cooper et al., 2018; Goulden & Bales, 2014; Miller 

et al., 2021; Miller & Piechota, 2011; Milly et al., 2018; Rungee et al., 2018). Similar to these 

findings, we suggest that in warmer years/ warmer catchments, seasonal precipitation will 

preferentially partition to atmospheric water demands, rather than to recharging groundwater 

storage.  In the two coolest and wettest catchments (J L.C. and W.O.), antecedent temperature is 

not related to Δwinter baseflow and in J B.C., temperature is positively related to Δwinter 

baseflow. These three catchments (J B.C. J L.C., W.O.), where higher antecedent temperatures 

do not reduce Δwinter baseflow, have the highest annual and winter precipitation, highest runoff 

efficiency, the mean elevation is over 500m higher than other catchments, and are characterized 

by host rocks consisting of Precambrian quartzites and Tertiary igneous intrusions while other 

catchments are underlain by sedimentary and clastic bedrock (Brooks et al. 2021). Presumably, 

the combination of colder, wetter conditions, shorter growing seasons, and limited storage 

resulting from subsurface geology give rise to shorter climatic memory in these catchments. 
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4.3.3 Antecedent Snowmelt Dynamics Controls on WBF 

 

 We found that faster antecedent snowmelt rates result increased  winter baseflow in all 

catchments except for J L.C. This finding is supported by recent research, in which Barnhart et 

al. (2016) suggest that faster melt rates allow for greater infiltration below the root zone of 

plants, leading to a greater fraction of snowmelt partitioned to streamflow generation or recharge 

as opposed to evapotranspiration. Many studies suggest that under future/ warmer climate 

scenarios, snowpack ablation (snowmelt + sublimation) will likely start earlier and extend over a 

longer period (Barnhart et al., 2016; Musselman et al., 2017; Regonda et al., 2005), as a result of 

increasing energy input into snowpacks. This shift in timing of snowmelt may lead to increasing 

atmospheric vapor transport and reduced partitioning of the snowpack to recharge/storage 

(Biederman et al., 2014; Carroll et al., 2019; Dailey, 2016; Earman et al., 2006; Gustafson et al., 

2010; Harpold & Brooks, 2018; Hood et al., 1999; Petersky & Harpold, 2018; Pomeroy et al., 

1998). 

4.3 Spatial Trends across catchments 

Our findings suggest that multi-year cycles of Δwinter baseflow will become more 

important to regulating runoff efficiency as the climate warms because in warmer and drier 

catchments, Δwinter baseflow typically plays a larger role in buffering/exacerbating runoff 

efficiency increases/decreases (SI Figure 2), and Δwinter baseflow is controlled over longer 

timescales in these catchments. In a warmer and more variable precipitation future, cooler and 

wetter catchments may see higher year-to-year variability associated with direct seasonal 

snowpack inputs. ΔWinter baseflow may buffer streamflow to a larger degree than expected; 

however, without multiple years of above-average snow accumulation, storage contributions to 

streamflow will decrease (Barnett et al., 2005; Marshall et al., 2019). Warming may also reduce 
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Δwinter baseflow volumes in the future through 1) increased evapotranspiration (Goulden & 

Bales, 2014; Rungee et al., 2018)  and 2) changes in snowmelt rates (Barnhart et al., 2016). 

Longer-term declining trends in winter baseflow may be more apparent under changing climate 

conditions, specifically during long-term drought scenarios observed in the last two decades in 

the western U.S. (Udall & Overpeck, 2017). Long term reductions in winter baseflow will reduce 

runoff efficiency over time.    

5. Conclusions 

 

In our study of northern Utah headwater catchments, we observed a consistent periodicity 

in catchment groundwater storage based on changes in winter baseflow, despite differences in 

climate, elevation, and catchment specific-geology. We found that a shorter 2-5 year periodicity 

is influenced by hydro-climatic variability from up to four years in the past, while a longer 12-15 

year periodicity is driven by previously identified regional precipitation anomalies.  

Using multiple linear regression (MLR), we examined how antecedent precipitation, 

snowmelt rate, and temperature affect interannual variability in winter baseflow as an indicator 

of groundwater storage. Our results show that groundwater storage is more sensitive to these 

factors over longer timescales (up to four years) in warmer and drier catchments, with 

groundwater storage primarily affected by the previous 1-2 years of antecedent conditions in 

cooler and wetter catchments.  We also discovered that changes in groundwater storage have a 

greater impact on runoff efficiency in warmer and drier catchments. These findings highlight the 

influence of groundwater storage on streamflow generation over several years, with a potential 

for an increasingly important role in moderating or reducing streamflow in a warmer future.  
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 Elevation  Area Aspect Bedrock 
/Geology  

Runoff 
Efficiency (RE) 
=(Q/P) 

Annual Mean Air 
Temperature (T) 

Annual Cumulative Precipitation 
(P) 

Annual Total normalized* 
Discharge (Q) 

Mean Winter normalized* 
Baseflow (WBF) 

Catchment 
Name 

 Min- 
Max (m)  

(km2) %(N+E) 
%(S+W)  

  Mean Range Mean 
(°C)  

SD Range Mean 
(mm/yr)  

SD Range CV: 
(SD/ 
Mean) 

Mean 
(mm/yr)  

SD Range CV Mean 
(mm/day)  

SD Range CV 

Chalk Creek 
(W CC) 

1725-
2477 

643 52:48 Sedimentary 
(carbonate 
and clastic) 

0.17 0.04-
0.34 

4.8 0.8 2-7 558 108 291-
841 

0.2 94 53 12-
274 

0.6 0.08 0.03 0.03-
0.19 

0.4 

Emigration 
Creek(J EC) 

1496 - 
2733 

41 40:60 Sedimentary 
(carbonate 
and clastic) 

0.18 0.01-
0.54 

7 0.8 5-10 795 167 423-
1356 

0.2 144 104 7-549 0.7 0.12 0.07 0.02-
0.37 

0.6 

Parleys 
Creek (J PC) 

1441 - 
2927 

135 50:50 Sedimentary 
(carbonate 
and clastic) 

0.22 0.07-
0.50 

6.7 0.8 4-10 785 161 419-
1327 

0.2 176 98 39-
523 

0.6 0.19 0.07 0.08-
0.39 

0.4 

Red Butte 
Creek (J RB) 

1646 -
2431 

19 39:61 Sedimentary 
(carbonate 
and clastic) 

0.23 0.08-
0.55 

6.9 0.8 5-10 803 169 431-
1331 

0.2 183 106 46-
600 

0.6 0.24 0.08 0.11-
0.43 

0.3 

Mill Creek             
(J MC) 

1539 - 
2927 

56 51:49 Sedimentary 
(carbonate 
and clastic) 

0.26 0.13-
0.41 

5.3 0.9 3-8 924 189 514-
1514 

0.2 239 89 99-
521 

0.4 0.37 0.12 0.16-
0.67 

0.3 

Ogden 
South Fork 
(W OS) 

1582-
2567 

356 47:53 Sedimentary 
(carbonate), 
Metamorphic 
(quartzite) 

0.35 0.16-
0.55 

5.2 0.9 3-8 804 160 476-
1263 

0.2 283 116 92-
652 

0.4 0.28 0.09 0.14-
0.63 

0.3 

City Creek          
(J CC) 

1382 - 
2512 

46 39:61 Sedimentary 
(carbonate 
and clastic) 

0.37 0.22-
0.68 

6.8 0.8 5-10 850 177 472-
1372 

0.2 318 114 133-
781 

0.4 0.41 0.08 0.24-
0.71 

0.2 

Big 
Cottonwood 
Creek (J BC) 

1531 - 
3445 

127 49:51 Metamorphic 
(quartzite) 

0.48 0.29-
0.75 

4.3 0.9 2-7 1043 219 607-
1738 

0.2 500 150 196-
919 

0.3 0.49 0.14 0.25-
1.08 

0.3 

Weber at 
Oakley (W 
O) 

2024-
3641 

420 48:52 

Sedimentary 
(carbonates)/ 
Igneous 
(intrusive) 

0.48 
0.25-
0.69 

2.6 0.9 0-5 946 182 
544-
1485 

0.2 458 143 
165-
881 

0.3 0.32 0.07 
0.19-
0.53 

0.2 

Little 
Cottonwood 
Creek (J LC) 

1548 – 
3510 

71 65:35 Igneous 
(intrusive) 

0.62 0.44-
0.88 

3.4 0.9 1-6 1293 276 738-
2135 

0.2 807 218 360-
1568 

0.3 0.51 0.12 0.27-
0.91 

0.2 

 

 

Note. Ten snow-dominated catchments in northern Utah range in elevation (min-max), total area size (km), aspect (N-E) (S-W), geology, runoff 

efficiency (streamflow/precipitation), mean annual temperature, annual cumulative precipitation, annual total discharge, and mean annual winter 

baseflow. Hydro-metrological variables include mean, standard deviation (SD), range and coefficient of variation (CV=SD/Mean).  

*normalized to catchment area, daily streamflow in cfs converted to mm/day   

Table 1 

Catchment Characteristics 
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Note. MLR equation:  Δ Winter baseflow= β Precipitation(n-i)  + β Temperature(n-i) + β Melt Rate(n-i) + β Melt Duration(n-i) (wy= 

current water year, i= number of years in the past (eg. n-1= 1 year previous), β= regression coefficient, R2 = coefficient of 

determination of observed vs. predicted values, bold indicates P-Val <0.005) 

Catchments Precipitation Temperature Normalized Melt Rate 

Normalized Melt 

Duration   

wy(Fall) wy-1 wy-2 wy-3 wy-4 wy-1 wy-4 wy-1 wy-2 wy-3 wy-2 wy-3 Y-int R2 

 (W CC) +(0.38) +(0.57) +(0.24) +(0.11) +(0.17) -(0.24)  +(0.07) -(0.07)    
(0.03) 0.84 

 (J EC)  +(0.14)    -(0.06)  +(0.44) +(0.02)    (0.06) 0.29 

 (J PC) +(0.40) +(0.38) +(0.23)   -(0.08) -(0.07) +(0.12) +(0.08)    
(-0.01) 0.62 

 (J RB) +(0.28) +(0.41) +(0.27) +(0.09)  -(0.22)  +(0.11)    +(0.18) (-0.11) 0.87 

 (J MC) +(0.12) +(0.39) +(0.19)  +(0.06) -(0.14)  +(0.17) +(0.19) +(0.06)   
(-0.04) 0.70 

 (W OS) +(0.49) +(0.41)    -(0.09)  +(0.04)     
(0.02) 0.46 

 (J CC) +(0.14) +(0.40) +(0.19)   -(0.24) -(0.09) +(0.26) +(0.03) +(0.08) +(0.09) +(0.15) (0.04) 0.67 

 (J BC) +(0.38) +(0.35) +(0.13)  +(0.1) +(0.08)  +(0.21) +(0.04)    
(-0.07) 0.58 

 (W O) +(0.30) +(0.47) +(0.23) +(0.13) + (0.17)   +(0.15) +(0.06)    
(-0.01) 0.61 

 (J LC) +(0.56) +(0.36)           
(0.01) 0.47 

Table 2 

 Antecedent Hydro-climactic Variables Included in Multiple Linear Regression  Model to Predict Δ Winter Baseflow.  
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Figures: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Study area map including the 10 snowmelt-dominated headwater catchments with 

climate, topography, and geology representing many similar regional catchments throughout the 

Western US. These catchments are all major water suppliers to the greater Salt Lake City region; 

each has a continuous gauging station (red triangles) with a record >76 years and feeds the 

Jordan and Weber Rivers in Northern Utah (state inset map), terminating in Great Salt Lake. 
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Figure 2: Mean annual (a) temperature (°C), (b) total precipitation (mm/yr), (c) 

normalized total discharge(mm/yr), (d) runoff efficiency 

(discharge(mm/yr)/precipitation(mm/yr)) and (e) normalized winter baseflow 

(mm/day) for 10 Northern Utah headwater catchments from 1902-2018. Mean annual 

temperature has increased in the last century (slope= (0.027-0.063°C/year)-

significantly from 1985-2018 in all catchments SI Table 1); precipitation, discharge, 

and baseflow exhibit variability from year to year, with no significant +/- trends over 

the last century (SI Table 1). Each colored line corresponds to a different headwater 

catchment. Catchments are color-coded from red to dark blue based on mean annual 

runoff efficiency, with warmer, drier, lower runoff efficiency catchments in 

red/orange and cooler, wetter, higher runoff efficiency catchments represented by 

blues. 
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Figure 4: Wavelet transform analysis of winter baseflow (mean across all catchments). Colors 

indicate the degree of correlation (power level) of the harmonic. White outlines indicate time 

steps with significant  (p<0.05) correlations. A century-long 2-5 year periodicity of high 

correlation/power level (0.23) (red values) (p<0.10) and a late-century significant (p<0.05) 

periodicity at a 12-15 year time-scale (power level (0.29)). 

Figure 3: Left Panel: Mean annual precipitation is strongly and significantly (𝑟2 = 0.75; 
p<0.001) related to baseflow (mm/day: left axis, mm/year: right axis) (error bars indicate 

variability), where wetter catchments have higher baseflow compared to drier catchments  (left 

panel). Right panel: Mean annual temperature is not significantly related to mean catchment 

baseflow conditions (r2= 0.21; p = 0.18). 
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Figure 5: Predicted winter baseflow using antecedent precipitation, temperature, normMR, and 

normMD, compared to observed winter baseflow (z-scored). On average, the model better 

predicted winter baseflow in warmer and drier (lower runoff effeciency) catchments R2>0.7 for 

W C.C., J P.C., J R.B., J M.C.. The model also reasonably predicts baseflow in cooler and 

wetter catchments, higher runoff effeciency  (R2> 0.46 ( W O.S., J C.C., J B.C., W.O., and J 

L.C.). 




